NMPP – KĄ REIKIA MOKĖTI | INFORMACIJA


Žemiau yra pateikiama glausta informacija apie Nacionalinį Mokinių Pasiekimų Patikrinimą (NMPP).


NMPP trukmė – 60min.

VIENAS SRAUTAS | 2026 03 23 d. 9h (vykdymo būdas elektroninis)

NMPP visų galimų taškų suma – 40 taškų (kiekvienas klausimas vertinimas vienu tašku). NMPP metu reikia atsakyti į klausimus su pasirenkamais atsakymai, įrašyti skaičių, paveikslėlyje pažymėti reikiamą atsakymą.

Vertinimo lygiai (pažymiais): (slenkantis lygis, kas atitiktų – 4; patenkinamas, kas atitiktų – 5 arba 6; pagrindinis lygis, kas atitiktų – 7 arba 8; aukštesnysis lygis, kas atitiktų 9 arba 10).

Uždavinių procentinis kiekis pagal žinių lygį: Slenkstinis – 35 proc., patenkinamas – 15 proc., pagrindinis – 35 proc., aukštesnysis – 15 proc.

NMPP sudaro keturios pagrindinės temos: (Skaičiai ir skaičiavimai – 30%; Modeliai ir sąryšiai – 30%; Geometrija ir matavimai – 30%; Duomenys ir tikimybės – 10%).

Savo turimu skaičiuotuvu NMPP naudotis negalima.


1. SKAIČIAI IR SKAIČIAVIMAI

1.1 Natūralieji, sveikieji, racionalieji, ir realieji skaičiai. Šaknys





1.2 Trupmenos ir dalys


1.3 Finansiniai skaičiavimai

2. MODELIAI IR SĄRYŠIAI

2.1 Dėsningumai

2.2 Algebra

Raidiniai reiškiniai. Apibendrinant nagrinėtus konkrečius pavyzdžius, suformuluojami, užrašomi raidėmis ir taikomi sudėties ir daugybos perstatomumo, jungiamumo, skirstomumo dėsniai (veiksmų savybės), dėsniai su nuliu ir vienetu. Apibrėžiama panašiųjų narių sąvoka. Pagrindžiamos ir taikomos panašiųjų narių sutraukimo, reiškinio prastinimo procedūros. Mokomasi sudaryti ir pertvarkyti paprastus raidinius reiškinius, kai tenka atlikti veiksmus su natūraliaisiais skaičiais. Apibrėžiamos vienanario, dvinario, trinario, daugianario sąvokos. Aiškinamasi, kaip sudauginti du raidinius reiškinius. Išvedamos ir taikomos greitosios daugybos formulės (kubų formulės nenagrinėjamos). Mokomasi paprastais atvejais iš kvadratinio trinario išskirti dvinario kvadratą. Daugianariai skaidomi dauginamaisiais (iškėlimas prieš skliaustus, greitosios daugybos formulių taikymas, grupavimas).

Nelygybės. Įsitikinama, kad skaitinėms nelygybėms būdingos savybės: jeigu a > b ir b > c, tai a > c; jeigu a > b, tai b < a; jeigu a > b, tai –a < –b; jeigu a > b, tai a ± c > b ± c; jeigu a > b ir c > 0, tai a ⋅ c > b ⋅ c; jeigu a > b ir c < 0, tai a ⋅ c < b ⋅ c; jeigu a > b ir c > 0, tai a : c > b : c; jei a > b ir c < 0, tai a : c < b : c. Apibrėžiamos sąvokos: nelygybė su vienu nežinomuoju, nelygybės sprendinys, nelygybės sprendinių aibė, griežta nelygybė, negriežta nelygybė; išsiaiškinama ženklų ≤, ≥ prasmė. Aptariama, ką reiškia nelygybių sistema, dviguboji nelygybė; mokomasi ją užrašyti dviejų nelygybių sistema. Nelygybių su vienu nežinomuoju sprendimo algoritmas pagrindžiamas skaitinių nelygybių savybių taikymu. Praktikuojamasi spręsti dvigubąsias nelygybes, jų sistemas. Atkreipiamas dėmesys į nelygybės ar nelygybių sistemos sprendimo algoritmą; mokomasi taisyklingai užrašyti nelygybės ar nelygybių sistemos sprendimą, pavaizduoti gautus sprendinius skaičių tiesėje, užrašyti juos intervalu. Sprendžiami uždaviniai, kai prašoma atrinkti tam tikras sąlygas tenkinančius nelygybių sprendinius.

2.3 Tiesiniai ir netiesiniai sąryšiai

3. GEOMETRIJA IR MATAVIMAI

3.1 Matavimo skalės ir vienetai

Ilgis, plotas, tūris. Aptariama metrinė matavimo sistema, įvairūs ilgio, ploto, tūrio matavimo vienetai. Praktinėse situacijose mokomasi įvertinti realių objektų dydžius. Matavimo vienetai stambinami ir smulkinami, įskaitant ir atvejus, kai dydžių skaitinės reikšmės yra dešimtainiai skaičiai.

3.2 Konstravimas

Braižymas. Skriestuvu ir liniuote mokomasi atidėti atkarpai lygią atkarpą, nubraižyti kampui lygų kampą, trikampiui lygų trikampį. Braižant trikampiui lygų trikampį, įsitikinama, kad užduotis atliekama ir turint tik tris tam tikrus trikampio elementus. Apibendrinant pavienius lygių trikampių brėžimo atvejus, suformuluojama taisyklė apie trikampio egzistavimą, suformuluojami trikampių lygumo požymiai, paprasčiausiais atvejais mokomasi juos taikyti. Fizinėmis ir skaitmeninėmis priemonėmis mokomasi rasti atkarpos vidurio tašką, nubrėžti duotai tiesei statmeną tiesę (kai ji eina per nurodytą tašką tiesėje ar šalia jos), padalyti kampą pusiau, pavaizduoti brėžinyje atstumą tarp dviejų taškų, tarp taško ir tiesės, tarp lygiagrečiųjų tiesių. Mokomasi brėžinyje atpažinti ar nubrėžti šiuos figūrų elementus: trikampio pusiaukampines, pusiaukraštines, aukštines; lygiagretainio aukštines; trapecijos aukštinę, pagrindus ir šonines kraštines.

3.3 Figūros

Plokščiosios figūros. Susipažįstama su kampų matavimo vienetu – laipsniu (°) ir kampų matavimo įrankiu matlankiu. Mokomasi vizualiai atpažinti smailųjį, statųjį, bukąjį, ištiestinį ir pilnąjį kampus; smailųjį, statųjį ir bukąjį trikampius. Apibrėžiama, kokie kampai vadinami gretutiniais, kryžminiais, mokomasi pagrįsti ir taikyti jų savybes. Formuluojama ir pagrindžiama hipotezė apie trikampio ir keturkampio kampų sumą. Paaiškinama, kad teiginį galima pagrįsti įvairiai ir kad ne kiekvieną teiginio pagrindimą galime laikyti matematiniu įrodymu. Šiam teiginiui iliustruoti galima pateikti ir aptarti kelis kurios nors nagrinėtos figūros savybės pagrindimo būdus. Tyrinėjant trikampių, stačiakampių  pavyzdžius, parodoma, kaip, perdėliojant stačiakampio dalis, gali būti gaunamos kitos figūros ir apibūdinamos tokios figūros, kaip lygiagretainis, trapecija, lygiašonė trapecija, rombas.

Apibrėžiama, kokios figūros matematikoje vadinamos panašiosiomis. Aiškinamasi, kokie panašiųjų figūrų elementai vadinami atitinkamais, mokomasi juos atpažinti. Tyrinėjant panašiuosius trikampius, įsitikinama, kad jų atitinkami kampai yra lygūs, o atitinkamų kraštinių ilgių santykiai lygūs tam pačiam skaičiui (šis skaičius vadinamas trikampių panašumo koeficientu). Apibrėžiama ir taikoma mastelio sąvoka. Suformuluojami trikampių panašumo požymiai. Mokomasi rasti panašiųjų trikampių, panašiųjų keturkampių nežinomų kraštinių ilgius, sudarant proporcijas. Pateikiami ir aptariami keli keturkampio kampų sumos radimo būdai.

Nagrinėjant pavyzdžius, išsiaiškinama, kas yra vadinama apibrėžtimi, teorema, hipoteze, išvada. Nagrinėjami sąlyginių teiginių „jei, tai“ pavyzdžiai, aiškinamasi, kuo teiginio sąlyga skiriasi nuo teiginio išvados. Mokomasi formuluoti sąlyginiam teiginiui atvirkštinį teiginį. Nagrinėjant konkrečius atvejus, įsitikinama, kad ne kiekvienas atvirkštinis teiginys yra teisingas. Apibrėžiama lygiagrečių tiesių sąvoka. Nagrinėjami kampai, kurie gaunami dvi lygiagrečias tieses perkirtus trečiąja tiese: atitinkamieji, vidaus priešiniai, vidaus vienašaliai. Aptariami lygiagrečiųjų tiesių požymiai, sprendžiami uždaviniai, susiję su tiesių lygiagretumu. Apibrėžiama, kokie keturkampiai vadinami kvadratais, stačiakampiais, lygiagretainiais, rombais, trapecijomis. Tyrinėjant konkrečius keturkampių pavyzdžius, pastebima, kad skirtingų tipų keturkampiai gali turėti bendrų ir tik jiems būdingų savybių. Aptariamos ir taikomos lygiagretainio, rombo, stačiakampio ir kvadrato savybės, kartu pastebint, kuri figūra yra bendresnės figūrų grupės dalis. Aiškinamasi, ką reiškia klasifikuoti figūras, prisimenamos trikampių rūšys (pagal kampus ir kraštines), klasifikuojami keturkampiai (pagal lygiagrečių kraštinių skaičių). Aptariamos trapecijų rūšys. Žinios apie nagrinėtas plokščiąsias figūras taikomos, sprendžiant paprastus matematinio ir realaus konteksto uždavinius.
Erdvės figūros. Nagrinėjant modelius ir brėžinius, mokomasi atpažinti stačiąją ar taisyklingąją prizmę, jos aukštinę; taisyklingąją piramidę, jos aukštinę ir apotemą; ritinio aukštinę; kūgio aukštinę ir sudaromąją. 

Erdvės figūros. Mokomasi pavaizduoti kubą ir stačiakampį gretasienį, taip pat suprojektuoti jų išklotines, atitinkančias nurodytus šių figūrų matmenis. 

Perimetro, ploto, tūrio skaičiavimai. Aptariamos ir taikomos kvadrato ir stačiakampio perimetro ir ploto formulės. Mokomasi apskaičiuoti stačiojo trikampio plotą kaip pusę stačiakampio ploto. Sprendžiami sudėtingesni ploto apskaičiavimo uždaviniai, kai plokščioji figūra sudaryta iš kelių žinomų figūrų (stačiojo trikampio, kvadrato, stačiakampio), įskaitant ir tokius, kai derinamos perimetro ir ploto sąvokos. Pagrindžiamos ir taikomos kubo ir stačiakampio gretasienio tūrio formulės. Iš kubų, stačiakampių gretasienių konstruojamos sudėtingesnės erdvinės figūros. Sprendžiami jų paviršiaus ploto, tūrio apskaičiavimo uždaviniai.

Mokomasi apskaičiuoti trikampio, lygiagretainio, trapecijos plotą kaip stačiakampio ar kvadrato ploto dalį. Pagrindžiamos šių figūrų ploto formulės. Tyrinėjant nustatoma, kad apskritimo ilgio ir apskritimo skersmens ilgio santykis apytiksliai lygus 3,14 (įvedamas skaičius π). Išsiaiškinama, kaip apskaičiuoti apskritimo ilgį, skritulio plotą, kai yra žinomas jo spindulio ilgis. Sprendžiami skritulio dalies ploto, apskritimo lanko dalies ilgio radimo uždaviniai, pavyzdžiui, ieškoma 1/4 skritulio ploto. Pagrindžiamos ritinio ir kūgio paviršiaus ploto apskaičiavimo formulės. Sprendžiami ritinio, kūgio paviršiaus ploto apskaičiavimo uždaviniai. Mokomasi paprastose situacijose taikyti stačiosios prizmės, ritinio, kūgio ir piramidės tūrio formules (šios formulės pateikiamos be įrodymų).


4. DUOMENYS IR TIKIMYBĖS

4.1 Duomenys ir interpretavimas

4.2 Tikimybės ir interpretavimas

Nagrinėjami kasdienių atsitiktinių įvykių, paprasčiausių bandymų (stochastinių bandymų) pavyzdžiai (pavyzdžiui, metama moneta ir stebima, kuria puse ji atvirs, traukiami rutuliai, vyksta finalinės varžybos ir stebima, kuri komanda laimės ir pan.). Dėmesys sutelkiamas į visas jų galimas baigtis, turint galvoje tiek bandymus su vienodai galimomis baigtimis, tiek su nevienodai galimomis baigtimis. Baigtys koduojamos, sudaroma baigčių aibė, svarstoma apie baigčių tikėtinumą (kuri mažai tikėtina ar labai tikėtina). Apibrėžiama įvykio tikimybės (P(įvykio) = m/n) sąvoka; vienodų baigčių atveju mokomasi ją taikyti, kai n neviršija 10.

Apibrėžiama įvykio sąvoka (galimų baigčių rinkinys). Nagrinėjami vieno dviejų etapų bandymai (stochastiniai bandymai) ir su jais susiję nesutaikomi įvykiai. Sudarant baigčių su dviem elementais rinkinius, braižomi galimybių medžiai ir sudaromos galimybių lentelės. Taip pat aptariama, kaip galima apskaičiuoti dviejų etapų bandymų baigčių skaičių, taikant daugybos taisyklę. Apibrėžiami įvykiai: elementarusis, būtinasis, negalimasis. Mokomasi taikyti formulę P(įvykio) = m/n. Aptariama, kodėl įvykio tikimybė visuomet yra skaičius iš intervalo [0; 1]. Mokomasi formuluoti įvykiui priešingą įvykį, pagrindžiamas įvykio ir jam priešingo įvykio tikimybių sąryšis. Kuriamos ir aptariamos žaidimo taisyklės, numatančios tą pačią laimėjimo tikimybę kiekvienam žaidėjui. Diskutuojama, kaip statistika gali padėti apskaičiuoti apytikrį įvykio tikėtinumą.



Parašykite komentarą