Žemiau yra pateikiama glausta informacija apie Nacionalinį Mokinių Pasiekimų Patikrinimą (NMPP).
NMPP trukmė – 60min.
VIENAS SRAUTAS | 2026 03 23 d. 9h (vykdymo būdas elektroninis)
NMPP visų galimų taškų suma – 40 taškų (kiekvienas klausimas vertinimas vienu tašku). NMPP metu reikia atsakyti į klausimus su pasirenkamais atsakymai, įrašyti skaičių, paveikslėlyje pažymėti reikiamą atsakymą.
NMPP pavyzdžiai: 2023 I variantas; 2023 II variantas; 2024 I variantas; 2024 II variantas; 2025 bandomasis; 2025 pagrindinis patikrinimas.
Vertinimo lygiai (pažymiais): (slenkantis lygis, kas atitiktų – 4; patenkinamas, kas atitiktų – 5 arba 6; pagrindinis lygis, kas atitiktų – 7 arba 8; aukštesnysis lygis, kas atitiktų 9 arba 10).
Uždavinių procentinis kiekis pagal žinių lygį: Slenkstinis – 35 proc., patenkinamas – 15 proc., pagrindinis – 35 proc., aukštesnysis – 15 proc.
NMPP sudaro keturios pagrindinės temos: (Skaičiai ir skaičiavimai – 30%; Modeliai ir sąryšiai – 30%; Geometrija ir matavimai – 30%; Duomenys ir tikimybės – 10%).
Savo turimu skaičiuotuvu NMPP naudotis negalima.
1. SKAIČIAI IR SKAIČIAVIMAI
1.1 Natūralieji, sveikieji, racionalieji, ir realieji skaičiai. Šaknys
Natūralieji skaičiai. Nagrinėjami romėnų skaitmenų ir skaičių rašymo pavyzdžiai, mokomasi perskaityti ir užrašyti romėniškuosius skaičius iki 3 000. Aptariama, kokia skaičiavimo sistema vadinama dešimtaine, pozicine. Apibendrinami natūraliųjų skaičių apibūdinimo būdai (vaizduojant skaičių tiesėje, užrašant skaitmenimis, skyrių suma, žodžiais, vartojant trumpinius tūkst., mln., mlrd., …). Mokomasi natūraliuosius skaičius palyginti, apvalinti, naudojant ne tik skaičių tiesės modelį, bet ir pagrindžiant bei taikant kitus skaičiams palyginti ir apvalinti taikomus metodus (pavyzdžiui, atsižvelgiant į pozicinę skaitmens reikšmę (skaitmens vietą skaičiuje), kai juos norima palyginti). Nagrinėjamos įvairios situacijos, kai taikoma apvalinimo taisyklė.
Veiksmai su natūraliaisiais skaičiais. Įsitikinama, kad veiksmams su natūraliaisiais skaičiais galioja sudėties ir daugybos perstatomumo bei jungiamumo, skirstomumo, sudėties su nuliu, daugybos iš vieno dėsniai (veiksmų savybės). Šie dėsniai užrašomi ir raidinėmis išraiškomis. Mokomasi padalyti iš dviženklio skaičiaus. Praktikuojamasi naudotis patogiais skaičiavimo metodais (mintinio skaičiavimo strategijomis), siekiant palengvinti skaičiavimus. Sprendžiami įvairaus konteksto probleminiai uždaviniai, kuomet reikia surasti, atsirinkti skaitinę informaciją, išskaidyti uždavinį į dalis, performuluoti uždavinį, taikyti kelis veiksmus, sudaryti skaitinį reiškinį. Mokomasi įvardyti atliekamų veiksmų komponentus. Mokomasi atpažinti skaičius, kurie dalijasi iš 2, 3, 4, 5, 9, 10, 100. Apibrėžiamos sąvokos: skaičiaus daliklis, skaičiaus kartotinis; pirminis skaičius, sudėtinis skaičius; lyginis skaičius, nelyginis skaičius. Mokomasi atrinkti skaičius iš nurodyto nedidelio skaičių intervalo, kad šie skaičiai atitiktų nurodytą požymį ar kriterijų. Nagrinėjamos situacijos, kuriose sudėtinį skaičių skaidome pirminiais dauginamaisiais, tyrinėjami įvairūs skaičiaus skaidymo pirminiais dauginamaisiais būdai. Sprendžiami probleminiai uždaviniai, kai reikia rasti kelių skaičių (mažiausią) bendrąjį kartotinį, (didžiausią) bendrąjį daliklį.
Sveikieji skaičiai. Apibrėžiamos sąvokos: neigiamieji sveikieji skaičiai, teigiamieji sveikieji skaičiai, skaičiui priešingas skaičius; sveikųjų skaičių aibė. Aptariamas sveikųjų skaičių žymėjimas skaičių tiesėje, mokomasi užrašyti skaičiui priešingą skaičių. Mokantis palyginti sveikuosius skaičius, pasitelkiamas skaičių tiesės modelis. Apibrėžiama koordinačių plokštuma ir mokomasi sveikųjų skaičių poras joje pavaizduoti taškais ir atvirkščiai. Įvedama koordinatinio ketvirčio sąvoka; atkreipiamas dėmesys, kad koordinačių ašys nepriklauso ketvirčiams. Paaiškinama, kad koordinačių metodas – tai procedūra, kurios metu objekto vieta tiesėje arba koordinačių plokštumoje nusakoma skaičiumi ar jų pora. Nagrinėjami šio metodo taikymo realiame gyvenime pavyzdžiai (pavyzdžiui, objekto vietos nustatymas pagal jo koordinates).
Veiksmai su sveikaisiais skaičiais. Pateikiamos ir aptariamos veiksmų (sudėties, atimties, daugybos ir dalybos) su sveikaisiais skaičiais vizualizacijos. Pagrindžiant atliekamus veiksmus su sveikaisiais skaičiais, remiamasi algebrinės skaičių sumos samprata. Įsitikinama, kad veiksmams su sveikaisiais skaičiais atlikti tinka ir natūraliesiems skaičiams taikyti skaičiavimo dėsniai (perstatomumo, jungiamumo, skirstomumo, su nuliu ir vienetu). Praktikuojamasi juos taikyti, atliekant paprastus skaičiavimus su sveikaisiais skaičiais mintinai. Sprendžiami įvairaus turinio nesudėtingi uždaviniai su sveikaisiais skaičiais.
Veiksmai su racionaliaisiais skaičiais. Vizualizuojami ir pagrindžiami sudėties, atimties, daugybos, dalybos veiksmai su racionaliaisiais skaičiais. Įsitikinama, kad racionaliesiems skaičiams tinka tie patys dėsniai kaip ir natūraliesiems bei sveikiesiems skaičiams: (a + b) + c = a + (b + c), a + b = b + a, a + 0 = 0 + a = a, a + (–a) = (–a) + a = 0, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c), a ⋅ b = b ⋅ a, a ⋅ 1 = 1 ⋅ a = a, a ⋅ 1/a = 1/a ⋅ a = 1, kai a ≠ 0, a ⋅ (b + c) = a ⋅ b + a ⋅ c. Veiksmai su racionaliaisiais skaičiais ir jų savybės taikomi, sprendžiant įvairaus konteksto uždavinius.
Laipsnis su sveikuoju rodikliu. Apibrėžiamas laipsnis su natūraliuoju rodikliu. Pagrindžiami ir taikomi laipsnių su vienodais pagrindais ir laipsnių su skirtingais pagrindais, bet tokiais pačiais rodikliais daugybos ir dalybos, taip pat laipsnio kėlimo laipsniu veiksmai. Apibrėžiama laipsnio su nuliniu ir sveikuoju neigiamuoju rodikliu sąvoka. Pagrindžiama, kad laipsniams su sveikaisiais neigiamaisiais rodikliais būdingos tos pačios savybės kaip ir laipsniams su sveikaisiais teigiamaisiais rodikliais. Paaiškinama, kad 𝑎^0=1, kai a nelygu 0. Aptariama veiksmų atlikimo tvarka reiškinyje, kai jame yra ir laipsnių. Nagrinėjamos realaus pasaulio situacijos, kai skaičiai užrašyti standartine skaičiaus išraiška 𝑎⋅10^𝑘, kai 1 ≤ a <10; k yra sveikasis skaičius. Mokomasi skaičius užrašyti tokiu pavidalu, juos perskaityti, palyginti. (Plačiau standartinio skaičiaus sąvoka taikoma fizikos pamokose.)
Kvadratinė ir kubinė šaknys. Apibrėžiamos sąvokos: kvadratinė šaknis, kubinė šaknis. Mokomasi apskaičiuoti kvadratinių ir kubinių šaknų reikšmes, kai pošaknyje yra atitinkamų racionaliųjų skaičių kvadratai, kubai. Mokomasi rasti kvadratinės ir kubinės šaknies apytikslę reikšmę, įvertinti skaitinio reiškinio, kuriame yra kvadratinė arba kubinė šaknis, reikšmę. Sprendžiami uždaviniai, kai be skaičiuotuvo reikia įvertinti, tarp kokių sveikųjų skaičių yra nurodytoji šaknis (pavyzdžiui, rasti tokį sveikąjį skaičių a, su kuriuo teisinga nelygybė 𝑎≤111<𝑎+1a≤sqrt(111)<a+1 ). Praktikuojamasi įkelti teigiamą skaičių į pošaknį ir iškelti jį prieš šaknies ženklą, taip pat sudauginti to paties laipsnio šaknis ar jas padalyti.
Skaičių aibės. Apibrėžiama, kokie skaičiai vadinami racionaliaisiais, iracionaliaisiais, realiaisiais. Aptariamos sąvokos: skaičių aibė, baigtinė aibė, begalinė aibė, aibės poaibis. Nustatomi ryšiai tarp skaičių aibių 𝑁, 𝑍, 𝑄, 𝐼, 𝑅. Mokomasi pagrįsti ir užrašyti, kuriai skaičių aibei priklauso ar nepriklauso įvairūs skaičiai (pavyzdžiui, 𝑎∈𝑁). Mokomasi skaičių aibes pavaizduoti simboliais, schemomis, užrašyti, naudojantis aibių teorijos simboliais, intervalais, nelygybėmis, reiškiniais (pavyzdžiui, mokoma reiškiniu užrašyti lyginių, nelyginių natūraliųjų skaičių aibes).
Veiksmai su realiaisiais skaičiais. Aptariama veiksmų su realiaisiais skaičiais atlikimo tvarka. Mokomasi apskaičiuoti, palyginti, įvertinti nesudėtingų skaitinių reiškinių reikšmes. Atliekant veiksmus su realiaisiais skaičiais, pirmenybė teikiama sklandžiam mintinio skaičiavimo strategijų taikymui. Kai skaičiai nėra patogūs skaičiuoti, pasitelkiamas skaičiuotuvas.
1.2 Trupmenos ir dalys
Trupmenos. Nagrinėjamos trupmenos m/n, kurių skaitiklyje ir vardiklyje gali būti bet koks natūralusis skaičius. Apibrėžiamos sąvokos: taisyklingosios trupmenos, netaisyklingosios trupmenos; mokomasi iš netaisyklingosios trupmenos išskirti sveikąją dalį, mišrųjį skaičių užrašyti netaisyklingąja trupmena. Praktikuojamasi suprastinti, pertvarkyti, palyginti, suapvalinti trupmenas. Mokomasi trupmenas, kurių vardiklyje yra 10, 100, 1 000, … , užrašyti dešimtainiu skaičiumi (su kableliu) ir atvirkščiai. Praktikuojamasi dešimtainius skaičius perskaityti, užrašyti žodžiais, skaitmenimis, skyrių suma, pavaizduoti skaičių tiesėje, palyginti, apvalinti. Apibrėžiamos sąvokos: teigiamasis skaičius, neigiamasis skaičius, racionalusis skaičius, skaičiui atvirkštinis skaičius. Įsitikinama, kad kiekvieną trupmeną m/n galima užrašyti baigtiniu ar begaliniu periodiniu dešimtainiu skaičiumi. Mokomasi racionaliuosius skaičius palyginti, suapvalinti nurodytu tikslumu.
Veiksmai su trupmenomis. Praktikuojamasi sudėti ir atimti mišriuosius skaičius, kurių trupmeninės dalys išreikštos trupmenomis su skirtingais vardikliais ir kai trupmeninių dalių suma peržengia vienetą. Trupmenos m/n daugyba iš natūraliojo skaičiaus apibrėžiama kaip tokių pačių trupmenų sumavimas. Naudojant vaizdinius modelius, išsiaiškinama, kodėl bendruoju atveju yra teisinga lygybė c ⋅ (a : b) = (c ⋅ a) : b ir kodėl trupmenoms gali būti taikomi perstatomumo, jungiamumo, skirstomumo, daugybos iš nulio ir vieneto dėsniai (veiksmų savybės). Pagrindžiami su trupmenomis m/n, mišriaisiais skaičiais atliekami sudėties, atimties, daugybos iš natūraliojo skaičiaus veiksmai. Jie taikomi, sprendžiant praktinio turinio uždavinius. Paaiškinama, kad veiksmams su dešimtainiais skaičiais galioja nagrinėti trupmenų dėsniai, jiems galima pritaikyti dešimtainę pozicinę skaičiavimo sistemą ir atlikti veiksmus panašiai kaip su sveikaisiais skaičiais. Apibrėžiama procento sąvoka, mokomasi ją taikyti, sprendžiant skaičiaus (dydžio) dalies ar visumos radimo uždavinius; skaičiaus nurodytu procentų skaičiumi padidėjimo ar sumažėjimo uždavinius.
1.3 Finansiniai skaičiavimai
Procento sąvoka taikoma, sprendžiant uždavinius apie pirkimą, pardavimą, nuolaidas (skaičiuotuvu nesinaudojama). Sprendžiami uždaviniai, kai vartojamos nuolaidos, procentinės nuolaidos sąvokos; mokomasi apskaičiuoti įvairių prekių ir paslaugų vieneto tarifus. Dalyvaudami projektinėse veiklose, mokiniai mokosi priimti skaičiavimais grįstus finansinius sprendimus (pavyzdžiui, planuoti ir valdyti asmeninį savaitės biudžetą), jie susipažįsta su mokesčių rūšimis ir sužino, kaip per mokesčius surinkti pinigai yra panaudojami bendruomenių, visuomenės reikmėms.
Mokomasi spręsti uždavinius, kai skaičius ar dydis kelis kartus tam tikru procentų skaičiumi padidinamas arba sumažinamas. Aptariami moksliniai informacijos šaltiniai, kurie gali padėti planuoti ir pasiekti finansinį tikslą. Mokomasi sukurti, sekti ir koreguoti biudžetą, siekiant ilgalaikių finansinių tikslų pagal įvairius scenarijus (pavyzdžiui, mokiniai gali parengti ir apsvarstyti kelis kelionės, renginio, remonto ir pan. biudžeto pasiūlymus). Nagrinėjant bankų ir kitų finansinių institucijų konkrečius siūlymus, aptariama, kas yra palūkanos, palūkanų norma, mokomasi jas apskaičiuoti. Mokomasi paaiškinti, kaip palūkanų normos gali turėti įtakos taupymui, investicijoms ir galutinei skolinimosi kainai. Nagrinėjami už prekes ir paslaugas apmokėtų sąskaitų pavyzdžiai, įvairių finansinių įstaigų siūlomos paskolų palūkanų normos ir taikomi papildomi mokesčiai; mokomasi priimti sprendimą dėl geriausio pasirinkimo varianto iš kelių siūlomų.
Mokomasi nustatyti ir palyginti valiutų kursus, konvertuoti valiutas, priimti sprendimą dėl mokėjimo būdo, kai galima pasirinkti, kokia valiuta atsiskaityti už prekes ar teikiamas paslaugas. Naudojantis skaitmeninėmis priemonėmis, tyrinėjami paprastų ir sudėtinių palūkanų augimo scenarijai ir aptariama, koks jų poveikis, planuojant ilgalaikį finansavimą (pavyzdžiui, sudaromas paskolos išsimokėjimo planas, taikant paprastuosius arba sudėtinius procentus; skaičiuojama, kokia būtų fiksuotos ir kintamosios palūkanų normos įtaka grąžintinai pinigų sumai). Aptariami galimybių gauti daugiau vertės už tuos pačius pinigus pavyzdžiai (pavyzdžiui, klientų lojalumas, dalyvavimas programose ir pan.). Mokomasi sukurti skaičiavimais grįsto geriausio pasirinkimo scenarijų, kuomet palyginamos palūkanų normos, metiniai mokesčiai, atlygiai ir kitos paskatos, kurias siūlo įvairios kredito ar lizingo bendrovės, bankai (pavyzdžiui, apskaičiuojami prekių įsigijimo, perkant kreditu ar lizingu, kainų skirtumai, aptariamos kredito ir lizingo privalumai ir trūkumai).
2. MODELIAI IR SĄRYŠIAI
2.1 Dėsningumai
Nagrinėjamos skaičių sekos, kurių kiekvienas kitas narys gaunamas iš prieš jį esančio, atliekant vieną ir tą patį veiksmą (ar kelis veiksmus). Nagrinėjamos lentelės, kuriomis vaizduojami ryšiai tarp skaičių (įvesties ir (ar) išvesties; I ir (ar) O) lentelės ir mokomasi šį ryšį apibūdinti, taikyti.
2.2 Algebra
Lygtys. Įsitikinama, kad skaitinėms lygybėms būdingos savybės: jeigu a = b, tai b = a; jeigu a = b ir b = c, tai a = c; jeigu a = b, tai a + c = b + c; jeigu a = b, tai a – c = b – c; jeigu a = b, tai a ⋅ c = b ⋅ c; jeigu a = b ir c ≠ 0, tai a : c = b : c. Mokomasi spręsti 1–3 žingsnių lygtis (pirmojo laipsnio) su vienu nežinomuoju, jų sprendimo algoritmą grindžiant skaitinių lygybių savybėmis. Nagrinėjamos tokia pačia lygtimi aprašomos situacijos, parodoma, kad ta pati situacija gali būti aprašyta skirtingomis lygtimis.
Sudėtingesnės lygtys. Sprendžiamos 1–4 žingsnių pirmojo laipsnio lygtys su vienu nežinomuoju (lygtyje gali būti ir skliaustų; sprendžiant lygtį, gali būti atliekami veiksmai ir su trupmenomis). Mokomasi sudaryti lygtis iš uždavinio sąlygos ar schemos ir tuo atveju, kai nežinomasis sąlygoje nenurodytas.
Raidiniai reiškiniai. Apibendrinant nagrinėtus konkrečius pavyzdžius, suformuluojami, užrašomi raidėmis ir taikomi sudėties ir daugybos perstatomumo, jungiamumo, skirstomumo dėsniai (veiksmų savybės), dėsniai su nuliu ir vienetu. Apibrėžiama panašiųjų narių sąvoka. Pagrindžiamos ir taikomos panašiųjų narių sutraukimo, reiškinio prastinimo procedūros. Mokomasi sudaryti ir pertvarkyti paprastus raidinius reiškinius, kai tenka atlikti veiksmus su natūraliaisiais skaičiais. Apibrėžiamos vienanario, dvinario, trinario, daugianario sąvokos. Aiškinamasi, kaip sudauginti du raidinius reiškinius. Išvedamos ir taikomos greitosios daugybos formulės (kubų formulės nenagrinėjamos). Mokomasi paprastais atvejais iš kvadratinio trinario išskirti dvinario kvadratą. Daugianariai skaidomi dauginamaisiais (iškėlimas prieš skliaustus, greitosios daugybos formulių taikymas, grupavimas).
Nelygybės. Įsitikinama, kad skaitinėms nelygybėms būdingos savybės: jeigu a > b ir b > c, tai a > c; jeigu a > b, tai b < a; jeigu a > b, tai –a < –b; jeigu a > b, tai a ± c > b ± c; jeigu a > b ir c > 0, tai a ⋅ c > b ⋅ c; jeigu a > b ir c < 0, tai a ⋅ c < b ⋅ c; jeigu a > b ir c > 0, tai a : c > b : c; jei a > b ir c < 0, tai a : c < b : c. Apibrėžiamos sąvokos: nelygybė su vienu nežinomuoju, nelygybės sprendinys, nelygybės sprendinių aibė, griežta nelygybė, negriežta nelygybė; išsiaiškinama ženklų ≤, ≥ prasmė. Aptariama, ką reiškia nelygybių sistema, dviguboji nelygybė; mokomasi ją užrašyti dviejų nelygybių sistema. Nelygybių su vienu nežinomuoju sprendimo algoritmas pagrindžiamas skaitinių nelygybių savybių taikymu. Praktikuojamasi spręsti dvigubąsias nelygybes, jų sistemas. Atkreipiamas dėmesys į nelygybės ar nelygybių sistemos sprendimo algoritmą; mokomasi taisyklingai užrašyti nelygybės ar nelygybių sistemos sprendimą, pavaizduoti gautus sprendinius skaičių tiesėje, užrašyti juos intervalu. Sprendžiami uždaviniai, kai prašoma atrinkti tam tikras sąlygas tenkinančius nelygybių sprendinius.
Lygčių sistemos. Apibrėžiamos sąvokos: lygtis su dviem nežinomaisiais, lygties su dviem nežinomaisiais sprendinys (skaičių pora), praktikuojamasi vieną nežinomąjį išreikšti kitu. Mokomasi tiesinės lygties ax + by = c sprendinius pavaizduoti grafiškai (taikant ir skaitmenines priemones). Aptariamos sąvokos: tiesinių lygčių sistema, tiesinių lygčių sistemos sprendinys. Mokomasi spręsti tiesinių lygčių sistemas grafiniu, keitimo, sudėties, sulyginimo būdais, tyrinėjama, kiek sprendinių gali turėti tokia sistema. Nagrinėjamos įvairios realaus pasaulio situacijos, kurios gali būti modeliuojamos lygčių sistemomis.
2.3 Tiesiniai ir netiesiniai sąryšiai
Tiesioginis proporcingumas. Nagrinėjamas tiesioginio proporcingumo sąryšis, mokomasi jį aprašyti (įvesties ir (ar) išvesties; I ir (ar) O) lentelėmis, skaičių poromis ir pažymėti taškais koordinačių plokštumoje. Susipažįstama su grafiko sąvoka, formuojami grafiko skaitymo ir braižymo įgūdžiai. Nagrinėjami kasdieniame gyvenime pasitaikantys dydžiai, kuriuos sieja tiesioginis proporcingumas. Apibrėžiamos santykio, proporcijos sąvokos; pagrindžiama ir, sprendžiant uždavinius, taikoma pagrindinė proporcijos savybė ir jos išvados.
Atvirkštinis proporcingumas. Nagrinėjamos įvesties ir (ar) išvesties (I ir (ar) O) lentelės, kuriomis išreikštas atvirkštinio proporcingumo sąryšis; mokomasi tokias lenteles sudaryti ir susieti su uždavinio sąlyga (pavyzdžiui, greitis ir laikas, esant pastoviam keliui; stačiakampio ilgis ir plotis, esant pastoviam plotui ir pan.). Taip pat mokomasi tokių lentelių duomenis užrašyti skaičių poromis ir pažymėti taškais koordinačių plokštumoje. Formuojami grafiko skaitymo ir braižymo įgūdžiai. Sprendžiami įvairaus konteksto uždaviniai, kuriuose remiamasi samprata apie tiesioginį ir atvirkštinį proporcingumą.
Tiesinis sąryšis. Nagrinėjamos įvesties ir (ar) išvesties (I ir (ar) O) lentelės, kuriomis išreikštas tiesinis sąryšis, mokomasi tokias lenteles sudaryti ir susieti su tekstinio uždavinio sąlyga (pavyzdžiui, kainos, kurią sudaro pastovioji ir kintamoji dalis, apskaičiavimas ir pan.). Tokių lentelių duomenys siejami su grafine jų išraiška, pastebint, kad skaičių poras atitinkantys taškai yra vienoje tiesėje. Sprendžiami įvairaus konteksto uždaviniai, kai dydžiai siejami tiesiniu sąryšiu.
3. GEOMETRIJA IR MATAVIMAI
3.1 Matavimo skalės ir vienetai
Kelias, laikas, greitis. Sprendžiami dviejų kūnų judėjimo ta pačia kryptimi, priešingomis kryptimis, priešpriešinio judėjimo uždaviniai, įskaitant ir situacijas, kuomet objektai pradeda ar baigia judėti skirtingu laiku (atliekami veiksmai – sudėtis, daugyba iš natūraliojo skaičiaus – ir su dešimtainiais skaičiais). Mokantis spręsti judėjimo uždavinius, pasitelkiamos schemos, įvairūs modeliai, aptariama ir taikoma kelio formulė.
Ilgis, plotas, tūris. Aptariama metrinė matavimo sistema, įvairūs ilgio, ploto, tūrio matavimo vienetai. Praktinėse situacijose mokomasi įvertinti realių objektų dydžius. Matavimo vienetai stambinami ir smulkinami, įskaitant ir atvejus, kai dydžių skaitinės reikšmės yra dešimtainiai skaičiai.
3.2 Konstravimas
Transformacijos. Apibrėžiamos transformacijos: simetrija tiesės atžvilgiu (atspindys), centrinė simetrija, posūkis, postūmis (lygiagretusis postūmis). Pasitelkiant fizinius modelius, skaitmenines priemones, mokomasi užbaigti braižyti figūrą, kad ji būtų simetriška, atkurti simetrišką figūrą iš jos dalies, schema pavaizduoti atliekamas transformacijas. Nagrinėjant praktinius pavyzdžius (pavyzdžiui, skirtingo dydžio nuotrauką), aptariama, kaip galima padidinti ar sumažinti objekto vaizdą. Koordinačių plokštumoje arba languotame popieriuje sudaromos didėjančių ar mažėjančių figūrų sekos, mokomasi surasti trūkstamus jų narius, apibūdinti taisyklę, kaip yra sudaryta figūrų seka. Mokomasi pagrįsti koordinačių plokštumoje pavaizduotų figūrų lygumą, nurodant transformacijų seką, kaip iš vienos figūros buvo gauta kita. Taip pat mokomasi šią seką apibūdinti, nurodant pradinės ir gautos figūros koordinates (pavyzdžiui, (x; y), (x + 2; y + 2), …).
Braižymas. Skriestuvu ir liniuote mokomasi atidėti atkarpai lygią atkarpą, nubraižyti kampui lygų kampą, trikampiui lygų trikampį. Braižant trikampiui lygų trikampį, įsitikinama, kad užduotis atliekama ir turint tik tris tam tikrus trikampio elementus. Apibendrinant pavienius lygių trikampių brėžimo atvejus, suformuluojama taisyklė apie trikampio egzistavimą, suformuluojami trikampių lygumo požymiai, paprasčiausiais atvejais mokomasi juos taikyti. Fizinėmis ir skaitmeninėmis priemonėmis mokomasi rasti atkarpos vidurio tašką, nubrėžti duotai tiesei statmeną tiesę (kai ji eina per nurodytą tašką tiesėje ar šalia jos), padalyti kampą pusiau, pavaizduoti brėžinyje atstumą tarp dviejų taškų, tarp taško ir tiesės, tarp lygiagrečiųjų tiesių. Mokomasi brėžinyje atpažinti ar nubrėžti šiuos figūrų elementus: trikampio pusiaukampines, pusiaukraštines, aukštines; lygiagretainio aukštines; trapecijos aukštinę, pagrindus ir šonines kraštines.
3.3 Figūros
Plokščiosios figūros. Susipažįstama su kampų matavimo vienetu – laipsniu (°) ir kampų matavimo įrankiu matlankiu. Mokomasi vizualiai atpažinti smailųjį, statųjį, bukąjį, ištiestinį ir pilnąjį kampus; smailųjį, statųjį ir bukąjį trikampius. Apibrėžiama, kokie kampai vadinami gretutiniais, kryžminiais, mokomasi pagrįsti ir taikyti jų savybes. Formuluojama ir pagrindžiama hipotezė apie trikampio ir keturkampio kampų sumą. Paaiškinama, kad teiginį galima pagrįsti įvairiai ir kad ne kiekvieną teiginio pagrindimą galime laikyti matematiniu įrodymu. Šiam teiginiui iliustruoti galima pateikti ir aptarti kelis kurios nors nagrinėtos figūros savybės pagrindimo būdus. Tyrinėjant trikampių, stačiakampių pavyzdžius, parodoma, kaip, perdėliojant stačiakampio dalis, gali būti gaunamos kitos figūros ir apibūdinamos tokios figūros, kaip lygiagretainis, trapecija, lygiašonė trapecija, rombas.
Apibrėžiama, kokios figūros matematikoje vadinamos panašiosiomis. Aiškinamasi, kokie panašiųjų figūrų elementai vadinami atitinkamais, mokomasi juos atpažinti. Tyrinėjant panašiuosius trikampius, įsitikinama, kad jų atitinkami kampai yra lygūs, o atitinkamų kraštinių ilgių santykiai lygūs tam pačiam skaičiui (šis skaičius vadinamas trikampių panašumo koeficientu). Apibrėžiama ir taikoma mastelio sąvoka. Suformuluojami trikampių panašumo požymiai. Mokomasi rasti panašiųjų trikampių, panašiųjų keturkampių nežinomų kraštinių ilgius, sudarant proporcijas. Pateikiami ir aptariami keli keturkampio kampų sumos radimo būdai.
Nagrinėjant pavyzdžius, išsiaiškinama, kas yra vadinama apibrėžtimi, teorema, hipoteze, išvada. Nagrinėjami sąlyginių teiginių „jei, tai“ pavyzdžiai, aiškinamasi, kuo teiginio sąlyga skiriasi nuo teiginio išvados. Mokomasi formuluoti sąlyginiam teiginiui atvirkštinį teiginį. Nagrinėjant konkrečius atvejus, įsitikinama, kad ne kiekvienas atvirkštinis teiginys yra teisingas. Apibrėžiama lygiagrečių tiesių sąvoka. Nagrinėjami kampai, kurie gaunami dvi lygiagrečias tieses perkirtus trečiąja tiese: atitinkamieji, vidaus priešiniai, vidaus vienašaliai. Aptariami lygiagrečiųjų tiesių požymiai, sprendžiami uždaviniai, susiję su tiesių lygiagretumu. Apibrėžiama, kokie keturkampiai vadinami kvadratais, stačiakampiais, lygiagretainiais, rombais, trapecijomis. Tyrinėjant konkrečius keturkampių pavyzdžius, pastebima, kad skirtingų tipų keturkampiai gali turėti bendrų ir tik jiems būdingų savybių. Aptariamos ir taikomos lygiagretainio, rombo, stačiakampio ir kvadrato savybės, kartu pastebint, kuri figūra yra bendresnės figūrų grupės dalis. Aiškinamasi, ką reiškia klasifikuoti figūras, prisimenamos trikampių rūšys (pagal kampus ir kraštines), klasifikuojami keturkampiai (pagal lygiagrečių kraštinių skaičių). Aptariamos trapecijų rūšys. Žinios apie nagrinėtas plokščiąsias figūras taikomos, sprendžiant paprastus matematinio ir realaus konteksto uždavinius.
Erdvės figūros. Nagrinėjant modelius ir brėžinius, mokomasi atpažinti stačiąją ar taisyklingąją prizmę, jos aukštinę; taisyklingąją piramidę, jos aukštinę ir apotemą; ritinio aukštinę; kūgio aukštinę ir sudaromąją.
Erdvės figūros. Mokomasi pavaizduoti kubą ir stačiakampį gretasienį, taip pat suprojektuoti jų išklotines, atitinkančias nurodytus šių figūrų matmenis.
Perimetro, ploto, tūrio skaičiavimai. Aptariamos ir taikomos kvadrato ir stačiakampio perimetro ir ploto formulės. Mokomasi apskaičiuoti stačiojo trikampio plotą kaip pusę stačiakampio ploto. Sprendžiami sudėtingesni ploto apskaičiavimo uždaviniai, kai plokščioji figūra sudaryta iš kelių žinomų figūrų (stačiojo trikampio, kvadrato, stačiakampio), įskaitant ir tokius, kai derinamos perimetro ir ploto sąvokos. Pagrindžiamos ir taikomos kubo ir stačiakampio gretasienio tūrio formulės. Iš kubų, stačiakampių gretasienių konstruojamos sudėtingesnės erdvinės figūros. Sprendžiami jų paviršiaus ploto, tūrio apskaičiavimo uždaviniai.
Mokomasi apskaičiuoti trikampio, lygiagretainio, trapecijos plotą kaip stačiakampio ar kvadrato ploto dalį. Pagrindžiamos šių figūrų ploto formulės. Tyrinėjant nustatoma, kad apskritimo ilgio ir apskritimo skersmens ilgio santykis apytiksliai lygus 3,14 (įvedamas skaičius π). Išsiaiškinama, kaip apskaičiuoti apskritimo ilgį, skritulio plotą, kai yra žinomas jo spindulio ilgis. Sprendžiami skritulio dalies ploto, apskritimo lanko dalies ilgio radimo uždaviniai, pavyzdžiui, ieškoma 1/4 skritulio ploto. Pagrindžiamos ritinio ir kūgio paviršiaus ploto apskaičiavimo formulės. Sprendžiami ritinio, kūgio paviršiaus ploto apskaičiavimo uždaviniai. Mokomasi paprastose situacijose taikyti stačiosios prizmės, ritinio, kūgio ir piramidės tūrio formules (šios formulės pateikiamos be įrodymų).
4. DUOMENYS IR TIKIMYBĖS
4.1 Duomenys ir interpretavimas
Apibrėžiamos sąvokos: imtis, imties vidurkis. Mokomasi kelti statistinius klausimus apie artimą aplinką, į kuriuos atsakyti galima, surinkus kokybinius ir kiekybinius duomenis. Aiškinamasi, kokie galėtų būti apklausos ar anketos klausimai; mokomasi numatyti galimų atsakymų reikšmes. Išsiaiškinama, kuomet galima apskaičiuoti imties vidurkį ir kokia gautos skaitinės reikšmės prasmė. Nagrinėjamos, interpretuojamos ir tokios situacijos, kai dažnių lentelėje ar stulpelinėje diagramoje pateikiamas labai didelis duomenų skaičius.
Mokomasi kelti statistinius klausimus, į kuriuos atsakyti galima analizuojant diskrečiuosius duomenis, pateiktus dvigubomis stulpelinėmis diagramomis, linijinėmis diagramomis. Praktikuojamasi išskirti požymį ir numatyti jo reikšmes, rūšiuoti duomenis pagal pasirinktą požymį. Išsiaiškinama, ką vadiname imties moda, mediana. Mokomasi apskaičiuoti kiekybinių duomenų vidurkį, modą ir medianą iš duomenų (dažnių) lentelės ar stulpelinės diagramos, aptariama, kuo svarbi kiekviena šių charakteristikų, kaip jos viena kitą papildo. Braižant diagramas ir duomenų lenteles, randant skaitines charakteristikas, pasitelkiamos ir skaitmeninės technologijos.
Aptariamos sąvokos: populiacija ir imtis, imties dydis, reprezentatyvioji imtis, atsitiktinumas. Paaiškinama, kas yra atsitiktinė imties elementų atranka, kaip galima organizuoti atsitiktinę imties elementų atranką (pavyzdžiui, pasinaudoti generatoriais). Susipažįstama su įvairiais imčių sudarymo būdais: sistemine atranka, sluoksnine atranka, lizdine atranka. Aiškinamasi įvairių rūšių duomenų pobūdis, kaip praktikoje gali būti interpretuojamas duomenų rinkinių kintamumas. Nagrinėjant konkrečias situacijas, aptariami imčių sudarymo ir gautų išvadų apie jas pagrįstumo klausimai (pavyzdžiui, mokomasi nuspėti mokykloje vykstančių rinkimų nugalėtoją, remiantis atsitiktinės atrankos tyrimo duomenimis). Mokomasi duomenis pateikti skrituline diagrama ir spręsti uždavinius, kai duomenys pateikiami šios rūšies diagramomis.
4.2 Tikimybės ir interpretavimas
Nagrinėjami kasdienių atsitiktinių įvykių, paprasčiausių bandymų (stochastinių bandymų) pavyzdžiai (pavyzdžiui, metama moneta ir stebima, kuria puse ji atvirs, traukiami rutuliai, vyksta finalinės varžybos ir stebima, kuri komanda laimės ir pan.). Dėmesys sutelkiamas į visas jų galimas baigtis, turint galvoje tiek bandymus su vienodai galimomis baigtimis, tiek su nevienodai galimomis baigtimis. Baigtys koduojamos, sudaroma baigčių aibė, svarstoma apie baigčių tikėtinumą (kuri mažai tikėtina ar labai tikėtina). Apibrėžiama įvykio tikimybės (P(įvykio) = m/n) sąvoka; vienodų baigčių atveju mokomasi ją taikyti, kai n neviršija 10.
Apibrėžiama įvykio sąvoka (galimų baigčių rinkinys). Nagrinėjami vieno dviejų etapų bandymai (stochastiniai bandymai) ir su jais susiję nesutaikomi įvykiai. Sudarant baigčių su dviem elementais rinkinius, braižomi galimybių medžiai ir sudaromos galimybių lentelės. Taip pat aptariama, kaip galima apskaičiuoti dviejų etapų bandymų baigčių skaičių, taikant daugybos taisyklę. Apibrėžiami įvykiai: elementarusis, būtinasis, negalimasis. Mokomasi taikyti formulę P(įvykio) = m/n. Aptariama, kodėl įvykio tikimybė visuomet yra skaičius iš intervalo [0; 1]. Mokomasi formuluoti įvykiui priešingą įvykį, pagrindžiamas įvykio ir jam priešingo įvykio tikimybių sąryšis. Kuriamos ir aptariamos žaidimo taisyklės, numatančios tą pačią laimėjimo tikimybę kiekvienam žaidėjui. Diskutuojama, kaip statistika gali padėti apskaičiuoti apytikrį įvykio tikėtinumą.
Kontroliniai darbai –> suskirstyta pagal temas.