SKAIČIAI IR SKAIČIAVIMAI



Matematikoje, skaičiai ir skaičiavimai yra pačios pagrindinės ir fundamentaliausios sąvokos, nuo kurių prasideda visas matematinis pažinimas. Skaičiai yra abstraktūs objektai, naudojami kiekiui apibūdinti ir matavimui atlikti, o skaičiavimai – tai operacijos (sudėtis, atimtis, daugyba, dalyba ir kt.), leidžiančios manipuliuoti šiais skaičiais. Nors tai gali atrodyti paprasta, gilus skaičių savybių ir įvairių skaičiavimo metodų supratimas yra būtinas visoms kitoms matematikos šakoms ir yra esminis įrankis kasdieniame gyvenime bei visose mokslo ir technologijų srityse.

SKAIČIAI IR SKAIČIAVIMAI

SKAIČIAI IR SKAIČIAVIMAI – yra matematikos mokymo programos “OKTAEDRAS“ vienas iš skyrių. Plačiau apie programą spauskite čia –>

Žemiau yra išvardintos šio skyriaus temos. Jei tema priklauso mokykliniam kursui ji pažymėta raide “M“, jei išeina už mokyklinio kurso ribų, raide “S“.

Pamokų metu taip pat nagrinėjami šio skyriaus uždaviniai, kurie buvo VBENMPP ir PUPP.



NATŪRALIEJI SKAIČIAI


SVEIKIEJI SKAIČIAI


RACIONALIEJI SKAIČIAI – TRUPMENOS


IRACIONALIEJI, REALIEJI IR KOMPLEKSINIAI SKAIČIAI


MATAVIMAI – SKAIČIAVIMAI


Šio SKYRIAUS yra mokoma Lietuvos mokyklose:

5 klasė | SKAIČIAI IR SKAIČIAVIMAI | NATŪRALIEJI IR SVEIKIEJI SKAIČIAI

Natūralieji skaičiai. Nagrinėjami romėnų skaitmenų ir skaičių rašymo pavyzdžiai, mokomasi perskaityti ir užrašyti romėniškuosius skaičius iki 3 000. Aptariama, kokia skaičiavimo sistema vadinama dešimtaine, pozicine. Apibendrinami natūraliųjų skaičių apibūdinimo būdai (vaizduojant skaičių tiesėje, užrašant skaitmenimis, skyrių suma, žodžiais, vartojant trumpinius tūkst., mln., mlrd., …). Mokomasi natūraliuosius skaičius palyginti, apvalinti, naudojant ne tik skaičių tiesės modelį, bet ir pagrindžiant bei taikant kitus skaičiams palyginti ir apvalinti taikomus metodus (pavyzdžiui, atsižvelgiant į pozicinę skaitmens reikšmę (skaitmens vietą skaičiuje), kai juos norima palyginti). Nagrinėjamos įvairios situacijos, kai taikoma apvalinimo taisyklė. 


Veiksmai su natūraliaisiais skaičiais. Įsitikinama, kad veiksmams su natūraliaisiais skaičiais galioja sudėties ir daugybos perstatomumo bei jungiamumo, skirstomumo, sudėties su nuliu, daugybos iš vieno dėsniai (veiksmų savybės). Šie dėsniai užrašomi ir raidinėmis išraiškomis. Mokomasi padalyti iš dviženklio skaičiaus. Praktikuojamasi naudotis patogiais skaičiavimo metodais (mintinio skaičiavimo strategijomis), siekiant palengvinti skaičiavimus. Sprendžiami įvairaus konteksto probleminiai uždaviniai, kuomet reikia surasti, atsirinkti skaitinę informaciją, išskaidyti uždavinį į dalis, performuluoti uždavinį, taikyti kelis veiksmus, sudaryti skaitinį reiškinį. Mokomasi įvardyti atliekamų veiksmų komponentus. Mokomasi atpažinti skaičius, kurie dalijasi iš 2, 3, 4, 5, 9, 10, 100.


5 klasė | SKAIČIAI IR SKAIČIAVIMAI | TRUPMENOS IR JŲ DALYS

Trupmenos. Nagrinėjamos trupmenos m/n, kurių skaitiklyje ir vardiklyje gali būti bet koks natūralusis skaičius. Apibrėžiamos sąvokos: taisyklingosios trupmenos, netaisyklingosios trupmenos; mokomasi iš netaisyklingosios trupmenos išskirti sveikąją dalį, mišrųjį skaičių užrašyti netaisyklingąja trupmena. Praktikuojamasi suprastinti, pertvarkyti, palyginti, suapvalinti trupmenas. Mokomasi trupmenas, kurių vardiklyje yra 10, 100, 1 000, … , užrašyti dešimtainiu skaičiumi (su kableliu) ir atvirkščiai. Praktikuojamasi dešimtainius skaičius perskaityti, užrašyti žodžiais, skaitmenimis, skyrių suma, pavaizduoti skaičių tiesėje, palyginti, apvalinti.

Veiksmai su trupmenomis. Praktikuojamasi sudėti ir atimti mišriuosius skaičius, kurių trupmeninės dalys išreikštos trupmenomis su skirtingais vardikliais ir kai trupmeninių dalių suma peržengia vienetą. Trupmenos m/n daugyba iš natūraliojo skaičiaus apibrėžiama kaip tokių pačių trupmenų sumavimas.


5 klasė | SKAIČIAI IR SKAIČIAVIMAI | FINANSINIAI SKAIČIAVIMAI

Procento sąvoka taikoma, sprendžiant uždavinius apie pirkimą, pardavimą, nuolaidas (skaičiuotuvu nesinaudojama).


5 klasė | GEOMETRIJA IR MATAVIMAI | MATAVIMO SKALĖS IR VIENETAI

Ilgis, plotas, tūris. Aptariama metrinė matavimo sistema, įvairūs ilgio, ploto, tūrio matavimo vienetai. Praktinėse situacijose mokomasi įvertinti realių objektų dydžius. Matavimo vienetai stambinami ir smulkinami, įskaitant ir atvejus, kai dydžių skaitinės reikšmės yra dešimtainiai skaičiai.


6 klasė | SKAIČIAI IR SKAIČIAVIMAI | NATŪRALIEJI IR SVEIKIEJI SKAIČIAI

Sveikieji skaičiai. Apibrėžiamos sąvokos: neigiamieji sveikieji skaičiai, teigiamieji sveikieji skaičiai, skaičiui priešingas skaičius; sveikųjų skaičių aibė. Aptariamas sveikųjų skaičių žymėjimas skaičių tiesėje, mokomasi užrašyti skaičiui priešingą skaičių. Mokantis palyginti sveikuosius skaičius, pasitelkiamas skaičių tiesės modelis. Apibrėžiama koordinačių plokštuma ir mokomasi sveikųjų skaičių poras joje pavaizduoti taškais ir atvirkščiai. Įvedama koordinatinio ketvirčio sąvoka; atkreipiamas dėmesys, kad koordinačių ašys nepriklauso ketvirčiams.


Veiksmai su sveikaisiais skaičiais. Pateikiamos ir aptariamos veiksmų (sudėties, atimties, daugybos ir dalybos) su sveikaisiais skaičiais vizualizacijos. Pagrindžiant atliekamus veiksmus su sveikaisiais skaičiais, remiamasi algebrinės skaičių sumos samprata. Įsitikinama, kad veiksmams su sveikaisiais skaičiais atlikti tinka ir natūraliesiems skaičiams taikyti skaičiavimo dėsniai (perstatomumo, jungiamumo, skirstomumo, su nuliu ir vienetu). Praktikuojamasi juos taikyti, atliekant paprastus skaičiavimus su sveikaisiais skaičiais mintinai. Sprendžiami įvairaus turinio nesudėtingi uždaviniai su sveikaisiais skaičiais.


6 klasė | SKAIČIAI IR SKAIČIAVIMAI | RACIONALIEJI SKAIČIAI

Trupmenos. Apibrėžiamos sąvokos: teigiamasis skaičius, neigiamasis skaičius, racionalusis skaičius, skaičiui atvirkštinis skaičius. Įsitikinama, kad kiekvieną trupmeną m/n galima užrašyti baigtiniu ar begaliniu periodiniu dešimtainiu skaičiumi. Mokomasi racionaliuosius skaičius palyginti, suapvalinti nurodytu tikslumu.


Veiksmai su racionaliaisiais skaičiais. Vizualizuojami ir pagrindžiami sudėties, atimties, daugybos, dalybos veiksmai su racionaliaisiais skaičiais. Įsitikinama, kad racionaliesiems skaičiams tinka tie patys dėsniai kaip ir natūraliesiems bei sveikiesiems skaičiams: (a + b) + c = a + (b + c)a + b = b + aa + 0 = 0 + a = aa + (–a) = (–a) + a = 0, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)a ⋅ b = b ⋅ aa ⋅ 1 = 1 ⋅ a = aa ⋅ 1/a = 1/a ⋅ a = 1, kai ≠ 0, a ⋅ (b + c) = a ⋅ b + a ⋅ c. Veiksmai su racionaliaisiais skaičiais ir jų savybės taikomi, sprendžiant įvairaus konteksto uždavinius.


6 klasė | SKAIČIAI IR SKAIČIAVIMAI | FINANSINIAI SKAIČIAVIMAI

Sprendžiami uždaviniai, kai vartojamos nuolaidos, procentinės nuolaidos sąvokos; mokomasi apskaičiuoti įvairių prekių ir paslaugų vieneto tarifus. Dalyvaudami projektinėse veiklose, mokiniai mokosi priimti skaičiavimais grįstus finansinius sprendimus (pavyzdžiui, planuoti ir valdyti asmeninį savaitės biudžetą), jie susipažįsta su mokesčių rūšimis ir sužino, kaip per mokesčius surinkti pinigai yra panaudojami bendruomenių, visuomenės reikmėms.

6 klasė | MODELIAI IR SĄRYŠIAI | TIESIOGINIS PROPORCINGUMAS

Tiesioginis proporcingumas. Nagrinėjamas tiesioginio proporcingumo sąryšis, mokomasi jį aprašyti (įvesties ir (ar) išvesties; I ir (ar) O) lentelėmis, skaičių poromis ir pažymėti taškais koordinačių plokštumoje. Susipažįstama su grafiko sąvoka, formuojami grafiko skaitymo ir braižymo įgūdžiai. Nagrinėjami kasdieniame gyvenime pasitaikantys dydžiai, kuriuos sieja tiesioginis proporcingumas. Apibrėžiamos santykio, proporcijos sąvokos; pagrindžiama ir, sprendžiant uždavinius, taikoma pagrindinė proporcijos savybė ir jos išvados.


7 klasė | SKAIČIAI IR SKAIČIAVIMAI | REALIEJI SKAIČIAI

Laipsnis su sveikuoju rodikliu. Apibrėžiamas laipsnis su natūraliuoju rodikliu. Pagrindžiami ir taikomi laipsnių su vienodais pagrindais ir laipsnių su skirtingais pagrindais, bet tokiais pačiais rodikliais daugybos ir dalybos, taip pat laipsnio kėlimo laipsniu veiksmai. Apibrėžiama laipsnio su nuliniu ir sveikuoju neigiamuoju rodikliu sąvoka. Pagrindžiama, kad laipsniams su sveikaisiais neigiamaisiais rodikliais būdingos tos pačios savybės kaip ir laipsniams su sveikaisiais teigiamaisiais rodikliais. Paaiškinama, kad  𝑎^0=1, kai a nelygu 0.


7 klasė | SKAIČIAI IR SKAIČIAVIMAI | FINANSINIAI SKAIČIAVIMAI

Mokomasi spręsti uždavinius, kai skaičius ar dydis kelis kartus tam tikru procentų skaičiumi padidinamas arba sumažinamas. Aptariami moksliniai informacijos šaltiniai, kurie gali padėti planuoti ir pasiekti finansinį tikslą. Mokomasi sukurti, sekti ir koreguoti biudžetą, siekiant ilgalaikių finansinių tikslų pagal įvairius scenarijus (pavyzdžiui, mokiniai gali parengti ir apsvarstyti kelis kelionės, renginio, remonto ir pan. biudžeto pasiūlymus).

7 klasė | MODELIAI IR SĄRYŠIAI | ATVIRKŠTINIS PROPORCINGUMAS

Atvirkštinis proporcingumas. Nagrinėjamos įvesties ir (ar) išvesties (I ir (ar) O) lentelės, kuriomis išreikštas atvirkštinio proporcingumo sąryšis; mokomasi tokias lenteles sudaryti ir susieti su uždavinio sąlyga (pavyzdžiui, greitis ir laikas, esant pastoviam keliui; stačiakampio ilgis ir plotis, esant pastoviam plotui ir pan.). Taip pat mokomasi tokių lentelių duomenis užrašyti skaičių poromis ir pažymėti taškais koordinačių plokštumoje. Formuojami grafiko skaitymo ir braižymo įgūdžiai. Sprendžiami įvairaus konteksto uždaviniai, kuriuose remiamasi samprata apie tiesioginį ir atvirkštinį proporcingumą.

8 klasė | SKAIČIAI IR SKAIČIAVIMAI | REALIEJI SKAIČIAI


Kvadratinė ir kubinė šaknys. Apibrėžiamos sąvokos: kvadratinė šaknis, kubinė šaknis. Mokomasi apskaičiuoti kvadratinių ir kubinių šaknų reikšmes, kai pošaknyje yra atitinkamų racionaliųjų skaičių kvadratai, kubai. Mokomasi rasti kvadratinės ir kubinės šaknies apytikslę reikšmę, įvertinti skaitinio reiškinio, kuriame yra kvadratinė arba kubinė šaknis, reikšmę. Sprendžiami uždaviniai, kai be skaičiuotuvo reikia įvertinti, tarp kokių sveikųjų skaičių yra nurodytoji šaknis. Praktikuojamasi įkelti teigiamą skaičių į pošaknį ir iškelti jį prieš šaknies ženklą, taip pat sudauginti to paties laipsnio šaknis ar jas padalyti.


Skaičių aibės. Apibrėžiama, kokie skaičiai vadinami racionaliaisiais, iracionaliaisiais, realiaisiais. Aptariamos sąvokos: skaičių aibė, baigtinė aibė, begalinė aibė, aibės poaibis. Nustatomi ryšiai tarp skaičių aibių 𝑁, 𝑍, 𝑄, 𝐼, 𝑅. Mokomasi pagrįsti ir užrašyti, kuriai skaičių aibei priklauso ar nepriklauso įvairūs skaičiai (pavyzdžiui, 𝑎∈𝑁). Mokomasi skaičių aibes pavaizduoti simboliais, schemomis, užrašyti, naudojantis aibių teorijos simboliais, intervalais, nelygybėmis, reiškiniais (pavyzdžiui, mokoma reiškiniu užrašyti lyginių, nelyginių natūraliųjų skaičių aibes).


Veiksmai su realiaisiais skaičiais. Aptariama veiksmų su realiaisiais skaičiais atlikimo tvarka. Mokomasi apskaičiuoti, palyginti, įvertinti nesudėtingų skaitinių reiškinių reikšmes. Atliekant veiksmus su realiaisiais skaičiais, pirmenybė teikiama sklandžiam mintinio skaičiavimo strategijų taikymui. Kai skaičiai nėra patogūs skaičiuoti, pasitelkiamas skaičiuotuvas.


8 klasė | SKAIČIAI IR SKAIČIAVIMAI | FINANSINIAI SKAIČIAVIMAI

Mokomasi nustatyti ir palyginti valiutų kursus, konvertuoti valiutas, priimti sprendimą dėl mokėjimo būdo, kai galima pasirinkti, kokia valiuta atsiskaityti už prekes ar teikiamas paslaugas. Naudojantis skaitmeninėmis priemonėmis, tyrinėjami paprastų ir sudėtinių palūkanų augimo scenarijai ir aptariama, koks jų poveikis, planuojant ilgalaikį finansavimą (pavyzdžiui, sudaromas paskolos išsimokėjimo planas, taikant paprastuosius arba sudėtinius procentus; skaičiuojama, kokia būtų fiksuotos ir kintamosios palūkanų normos įtaka grąžintinai pinigų sumai).


III gimnazijos klasė | SKAIČIAI IR SKAIČIAVIMAI

Veiksmai su skaičių aibėmis. Nagrinėjama realiųjų skaičių aibės struktūra. Pateikiami baigtinių ir begalinių; diskrečiųjų ir tolydžiųjų (intervalų) skaičių aibių pavyzdžiai. Mokomasi reiškiniu užrašyti natūraliųjų skaičių, kuriuos dalijant iš nurodyto natūraliojo skaičiaus d gaunama nurodyta liekana  𝑟(𝑛⋅𝑑+𝑟,𝑛∈𝑁), aibę. Apibrėžiama aibių sąjunga, sankirta ir skirtumas. Atliekami veiksmai su aibėmis. Praktikuojamasi veiksmus su aibėmis vaizduoti Veno – Oilerio diagramomis.


UŽUOMINŲ ŽAIDIMAS

UŽUOMINŲ ŽAIDIMAS – tai matematinis klausimas iš nagrinėjamos temos. Atsakyti į klausimą yra pateikiamos užuominos. Ne visada visos užuominos yra susijusios su nagrinėjama problema, todėl mokinys turi atsirinkti, kas yra perteklinė informacija. Kartais užuominos viena kitą papildo todėl atsakyti į klausimą reikės kritinio mąstymo, logikos ir žinių iš nagrinėjamo skyriaus.

Užuominų žaidimo klausimas nėra sukurtas DI, tai mano asmeninė priemonė kuo įvairiau pateikti informaciją, sudominti mokinį nagrinėjamu matematikos skyriumi.




Visą medžiagą parengė matematikos korepetitorius – Nerijus Simanavičius

Parašykite komentarą